Automated Driving – Industry Perspective
Robert Bosch GmbH, Chassis Systems Control
Stephan Stass
Senior Vice President Business Unit Driver Assistance
Advanced Driver Assistance: Trends & Growth

Mega Trends
- Energy Efficiency
- Connectivity
- Aging Society
- Urbanization
- Health & Wellbeing

Market Drivers
- Safety
- Comfort
- Democratization
- Automated Driving

Market Growth
- 2014 2016 2021
- CAGR: 20%
- CAGR: 18%
- CAGR: 18%

Chassis Systems Control
Bosch own market analysis/data 2014
CAGR 2014-2021
Automated and connected – social benefits

<table>
<thead>
<tr>
<th>Reduced congestion</th>
<th>Fewer traffic jams and less waiting time at intersections and lights → 80% improvement in traffic throughput¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher fuel efficiency</td>
<td>Synchronised traffic flow → 23 to 39% improvement in highway fuel economy²</td>
</tr>
<tr>
<td>Gain in productivity</td>
<td>Time in transit becomes more productive → 56 minutes per day freed up for other uses (US)³</td>
</tr>
<tr>
<td>Democratization of mobility</td>
<td>Over-65 segment growing 50% faster than overall population → Allow a variety of age ranges to be mobile</td>
</tr>
<tr>
<td>Improved safety</td>
<td>Reduction in global road fatalities → 90% of car accidents caused by human error⁴</td>
</tr>
</tbody>
</table>

² Atiyeh, Clifford (2012), Predicting Traffic Patterns, One Honda at a Time, MSN Auto, June 25.
³ US Department of Transportation Highway Safety Administration (2011), Report # FHWA-PL-II-022
⁴ Bosch accident research; car accidents leading to personal injuries
Roadmap

Partially automated

System takes control of longitudinal and lateral guidance in specific use cases.

Driver still keeps a watchful eye

- **Highway assist 2018**
- **Integrated cruise assist 2017**
- **Traffic jam assist 2015**
- **Automatic emergency braking 2010**
Highly automated driving

- Traffic jam assist 2015
- Integrated cruise assist 2017
- Highway assist 2018
- Highway pilot 2020
- Fully automated driving: Auto pilot
- Traffic jam pilot 2017

Fully automated driving without driver in the loop
Key technologies for automated driving

- **Surround sensing:**
 - Camera, radar, ultrasonic, …

- **Localisation in online map data:**
 - To provide long range planning information

- **Functions:**
 - Decision making in dynamic situations

- **Driver supervision:**
 - System has to be able to return control to the driver at any time

- **Vehicle motion control:**
 - Braking, steering, accelerating
Surround sensing – vehicle sensor concept

- Long-range radar
- Mid-range radar
- 3rd sensor principle
- Stereo-video
- Long-range radar
- Mid-range radar
- Near-range cameras
- Ultrasonic sensors

360° surround sensing by combination of different sensors

- Long- and mid-range radar prerequisite for driving at higher speed
- Satisfy reliability requirements by using multiple sensors for each area
Highly automated driving requires latest high-precision map data
- Aggregated information processing and delivery via the cloud
Principle for decision making of 3 Levels

Strategic
high level task oriented planning, similar to standard navigation,
e.g. "drive from A to B, take road X and Y"

Tactical
driving maneuvers,
e.g. "drive on right lane and then turn right"

Reactive
low level driving primitives,
e.g. "master dynamic situations"

Automated Driving must incorporate all levels of planning done by a human
Highly automated driving changes on-board network

Fail-safe architecture

Fail-operational architecture

Drivers of E/E architecture:
• increasing computing power
• demands for automated driving functionalities

Consequences:
• HW/SW repartitioning (sensor/ECU/cloud)
• use of CE components (µC, FPGA, GPU…)
• redundancies at marketable costs

Redundant power supply, interfaces, and processing units required
Need for highly reliable architecture will change on-board network completely
Fail-operational architectures guarantee safety at any time
Driver as backup – monitoring necessary

- Distraction detection
 ... because 80% of accidents caused by inattentive drivers

- Drowsiness detection
 ... because 30% of drivers have experienced microsleep events

- Health monitoring
 ... because 10% of fatal accidents caused by medical conditions

- Identification
 ... because it enables the vehicle to adapt to the person driving

- Adaptive assistance
 ... because it enables the vehicle to react according to the driver's state

Driver monitoring will be a key element for automated driving functions

- System has to be able to return control to the driver at any time

1 NHTSA-Report DOT HS 810 593, April 2006
2 DVR-Report 3/2012, representative survey of 2 000 persons
3 Destatis Fachserie 8 Reihe 7, 2010
SMMT CONNECTED – Automated Driving

Safety – reliable actuation elements

Redundant steering, braking, and stabilisation systems required
- Modular actuation concept offers a perfect solution for automated driving
SMMT CONNECTED – Automated Driving

Legislation Frameworks & Main Activities

Current legal framework

- National laws
- Geneva convention (1949)
- Vienna convention on road traffic (1968):

 Article 8 (5):
 „Every driver shall at all times be able to control his vehicle or to guide his animals“

Legislation framework no longer reflects technical progress

- Need for adaptation to take account of highly automated driving
Conclusions

- Automated driving increases safety and comfort
 - That’s what we call “Invented for life”

- Stepwise implementation starts with highway driving and parking functions

- The path towards automated driving has to overcome new challenges for sensors, maps, system architecture, validation standards and regulation

- Bosch has all necessary key technologies available and is getting them ready for market entry
Thank you for your attention!